RIP-like Properties in Subsampled Blind Deconvolution
نویسندگان
چکیده
We derive near optimal performance guarantees for subsampled blind deconvolution. Blind deconvolution is an ill-posed bilinear inverse problem and additional subsampling makes the problem even more challenging. Sparsity and spectral flatness priors on unknown signals are introduced to overcome these difficulties. While being crucial for deriving desired near optimal performance guarantees, unlike the sparsity prior with a nice union-of-subspaces structure, the spectral flatness prior corresponds to a nonconvex cone structure, which is not preserved by elementary set operations. This prohibits the operator arising in subsampled blind deconvolution from satisfying the standard restricted isometry property (RIP) at near optimal sample complexity, which motivated us to study other RIP-like properties. Combined with the performance guarantees derived using these RIP-like properties in a companion paper, we show that subsampled blind deconvolution is provably solved at near optimal sample complexity by a practical algorithm.
منابع مشابه
Restoration of Atmospheric Turbulence-distorted Images via RPCA and Quasiconformal Maps
We address the problem of restoring a high-quality image from an observed image sequence strongly distorted by atmospheric turbulence. A novel algorithm is proposed in this paper to reduce geometric distortion as well as space-and-time-varying blur due to strong turbulence. By considering a suitable energy functional, our algorithm first obtains a sharp reference image and a subsampled image se...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملLifting for Blind Deconvolution in Random Mask Imaging: Identifiability and Convex Relaxation
In this paper we analyze the blind deconvolution of an image and an unknown blur in a coded imaging system. The measurements consist of subsampled convolution of an unknown blurring kernel with multiple random binary modulations (coded masks) of the image. To perform the deconvolution, we consider a standard lifting of the image and the blurring kernel that transforms the measurements into a se...
متن کاملA new pencil criterium for multichannel blind deconvolution in data communication systems
It is well known that blind channel deconvolution enables the receiver to equalize the channel simply by analyzing the received digital signal. Much of the work in 1990’s faces the challenge presented by multiple-output systems, exploiting cyclostationarity properties and multivariate formulation of the incoming data. Our proposal is twofold: on one hand, we develop a theoretical analysis of a ...
متن کاملFundamental Limits of Blind Deconvolution Part II: Sparsity-Ambiguity Trade-offs
Blind deconvolution is an ubiquitous non-linear inverse problem in applications like wireless communications and image processing. This problem is generally ill-posed since signal identifiability is a key concern, and there have been efforts to use sparse models for regularizing blind deconvolution to promote signal identifiability. Part I of this two-part paper establishes a measure theoretica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.06146 شماره
صفحات -
تاریخ انتشار 2015